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Abstract -- ...... rent generation SIMD machines tend to be quite large.
We present a fine grained, assively parallel . D arcji- There is relatively little cooperatio between the SIMD

tecture. called the accelerator, and den- machine and the host machines dtiring the conputa-
tion. This reinforces the division between SIMD coni-strate its use in a n ' ber of problems in computational tions anorce tion a e S.

geometry. This archite ture is extremely dense and highly
scalable. Systems of 10 processing elements can be feasibly We feel this division is counterproductive. To illus-
embedded in workstations. We advocate that this architec- trate this a few algorithms are presented in Section 4

that use a mixture of SIMD and SISD constructs to
ture be used in tandem with conventional, single sequence

machines and with small scale, shared memory multipro- achieve high performance. Interestingly, these algo-

cessors. A language for programming such heterogeneous rithms are quite simple compared to the optimal. single
systems is presented that smoothly encorporates the SIMD sequence algorithms for the same problem, and yet the

instructions of the data structure accelerator with conven- SIMD algorithms perform substantially better. The
tional single sequence code. problems these techniques solve arise as parts of much

larger problems, such as mechanical simulation. that1 Introduction are quite difficult to parallelize using SIMD techniques.

There has been a significant body of work on single It would be wildly impractical to devote a Connection
instruction, multiple data (SIMD) computer architec- Machine their resolution in most cases.
tures in the past. This work ranges from the MPP In this paper we suggest that the real role for SIMD
machine developed at Goodyear [4] to the Connection architectures is not as "stand-alone supercomputers,"
Machine[3] and the Masspar MP-i today . These ma- but as integral components of heterogeneous machines
chines are generally viewed (and sometimes even adver- that consist of both SIMD and SISD (or MIMD)
tised) as large -supercomputers." They are intended components-each component responsible for the por-
to be used for large problems that are not practical tions of a computation at which they are most effec-
on smaller machines. However, these SIMD machines tive. This often means managing large, memory resi-
are not uniformly better than conventional processing dent data structures, or performing simple operations
elements or the new generation of MIMD processors on large blocks of data. Thus, a natural way to merge
for all problems. It is rarely cost effective to couple the a SIMD architecture with a conventional one is to inte-
large SIMD machines with other types of processing el- grate the SIMD processing elements into the memory
enents. so that a combined, heterogeneous machine can system.
be applied to a problem-each component performing We argue for simple SIMD architectures that can
those computations at which it is best. Furthermore, be built relatively cheaply and with very high density.
existing SIMD machines have a relatively modest num- We are interested developing systems with upwards ofber of processing elements (the Connection Machine 106 processing elements that can be used in personal
can handle up about 104.8). workstations and upwards of 108 for supercomputing

The chunks of computation performed on the cur- applications." The individual elements of such SIMID
architectures must be quite simple to have this type of

*This research was supported in part by the Advanced Re- density and their interconnect must also be simple to
search Projects Agency of the Department of Defense under allow for scalability and the size system we are inter-
Office of Naval Research Contract N00014-88-K-0591, the Na-
tional Science Foundation through grant DMC-86-17355 and the ested. We have developed a class of SIM D architect tires
Office of Naval Research through contract N00014-89-J-1946. that meets these criteria which we call Data Structure
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Acc(hralors (DSA).' In Section 2 we present their or- mizes the number of operations that need to he incor-
ganization ill detail. porated in each PE. but they are sufficiently powerful

One of the problems with dealing with heterogeneous for most applications. Because the DSA is often used to
architectures is the difficulty of expressing algorithms manage large tables, we have included content addre,.-
clearly and succinctly. In Section 3 we describe a few able memory in the DSA architecture. An example of
natural extensions of a hypothetical C-like langauge such an element used in a one dimensional linear ar-
that simplifies the description of data parallel compu- ray is shown in [~igure 1. Each processing element is
tations. This extended language is uwique in that it al- called a line. A line contains some amount of content
lows one to express cooperative algorithms that are ex- addressable memory (CAM) and random access mem-
ecuted onl a heterogeneous computer consisting of both ory (RAM). A particular data structure accelerator is
a SIMD component and conventional single sequence characterized by four parameters: the number of lines
component. in the DSA (C'). the dimensionality of their interco-

Having SIMD computation cheaply available affects nect, the number of bits of CAM (i7) and the number
the type of algorithms that are used. Many of the com- of bits of RAM (n). The Sehct Word. which controls
plex algorithms developed for searching and managing which PE's participate in an operation. is shared by all
data structures are no longer necessary because the the lines of the DSA.
data structures can be managed by the DSA and all Generally, the dimensionality of the DSA is under-
elements handled in parallel. This is demonstrated in stood (it is usually one) and the number of lines is not
Section 4 where we discuss a few problems in compu- important to the algorithms. However, the size of the
tation geometry. CAM and RAM structures is important. Thus, we say

that a data structure accelerator has parameters (17, n)
2 The Data Structure Accelerator Architec- when each line has im bits of CAM and n bits of RAM.

ture The amount of CAM and RAM associated with each

The Data Structure Accelerator (DSA) is a class of line of a DSA can be optimized for different applica-
SIMD architectures that is extremely dense, easily scal- tions and can range from DSA systems with all CAM
able and that has been optimized to efficiently perform and no RAM to all RAM and no CAM. The Smart
functions that are difficult for conventional process- Memories Project at MIT has built a 64 line (32.4)
ing systems. The DSA's processing elements (PE's) DSA chip [6, 8], a 256 line (32,4) DSA chip [1] and a
are sufficiently compact that machines with upwards board that implements a 4096 line (32,4) DSA. With
of 10 processing elements are feasible-well into the current technology, devices with thousands of lines are
massively parallel regime. not impractical and systems in the range of 106 to 108

The processing elements are connected in a low di- PE's are feasible.
mension. rectangular grid. This type of interconnect is The data structure accelerator uses a three valued
much cheaper, and call be scaled upwards much better logic for two purposes: to indicate which elements of
than the boolean n-cube network used by machines like an array execute particular instructions and within the
the (onnection Machine. Although using this simple CAM cells, to increase their flexibility. One unit of
interconnect scheme makes a few problems impractical, this three valued system is called a trit. Each trit can
we felt that the improved scale and cost of the resulting assume one of the values 0, 1 or X. The only binary
system more than compensated. For many applications operation we perform with trits is equityalenc(. which
a one dimensional interconnect is sufficient. For some obeys the following -truth" table.
problems in vision and computational geometry two di-
mensional interconnects are useful. In principle, higher 0 1 X
dimensional interconnects could be used, but their im- 0 1 0 1
pact on pin count and PE/chip density is severe. For 1L 0 1 1
now we are only considering one and two dimensional X 1 1 1
data structure accelerators.

To keep the processing elements small, we have de- The DSA architecture is capable of performing five
cided to restrict them to single bit width. This mini- basic instructions: select, write, match, operate

and readout. The select instruction specifies which
'Earlier versions of this work at MIT referred to this archi- processing elements participate in the next sequence

tecture as a Database Accelerator. Since this effort is directed of instructions by writing its operand, which is a trit
towards "in memory" databases our original choice of names was
somewhat misleading. To correct this we have chosen the name string, into the Select Word of the DSA. Until the next
data structure accelerator which is more suggestive, select instruction, only lines whose address matches
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Previous line
Function

Trit electwordControl

match word

Next line

Figure 1: MIT Database Accelerator Architecture

the contents of the select word perform any LSA op- is returned if all priority encoder latches contain zeroes.
eration. Thus to have all lines active, the select word Even though a particular set of parameters must be
is filled with X's. To have the even lines participate, a chosen when building a DSA system, the user can sim-
XXXX.. .XO is used, and if 3, 11, 19 and 27 are to par ulate a DSA with a different set of parameters at sur-
ticipate. the select word will contain 0...OXX011. prisingly small cost as shown in following table. Each

The other four instructions are executed in parallel entry indicates the cost of simulate the particular oper-
by each of the selected processing elements in a SIMD ation on a DSA with parameters (kin, en). This ability
fashion. The write instruction writes its operand into to emulate DSA's with different parameters is one of
the CAM word of the selected processing element(s). the most important differences between the DSA and
Since the Select Word can contain X's a write instruc- previous CAM designs.
tion can cause the CAM of more than one PE to be
modified. Operation (kin, fn) (in, n) (0, fn)

The match instruction includes a data word that is match 1 2k - 1 2kin - I
matched against the contents of the CAM words of operate I te e
each of the selected PE's using the equivalence func- write 1 km
tion given above. The result of the match is then writ-
ten into the MatchLatch where it can use used by the 3 An Algebraic Language for Specifying DSA
operate instruction. No data is transmitted out of the Operations
DSA by a match instruction.

The operate instruction causes each selected PE to We do not believe the DSA should be viewed as a uni- ,QU4
perform a boolean operation on the contents of two versal computing engine but rather as a component of Speko
registers and store the result in a third. This is a three a heterogeneous computing system. where the DSA is
operand instruction. As shown in Figure 1, one of the used as a slave of some host processor or perhaps shared
operands can come from the MatchLatch or a register for among several processors. The host, or its delegate,.
of an adjacent PE. The result of the boolean operation is responsible for sequencing the DSA instructions and
is also latched by the priority encoder> performing those data operations for which a SISD or

The contents of the priority encoder are read using MIMD machine is preferable. El
the readout instruction. The readout instruction re- Thus algorithms that utilize the DSA are a mixture E)
turns the address of one of the lines whose priority en- of DSA instructions and conventional single sequence
coder latch is set. At the same time it clears that par- processor instructions. Rather than expressing these
ticular priority encoder latch. Consequently, successive algorithms in a mixture of low level DSA instructions
readout instructions return the addresses of the lines and some high level language for the single sequence
whose priority encoders contain a one. A special code portion of the instruction stream, we have developed

-$

STATEMENT "A" per Dr. Ralph Wachter e~ji andjorONR/Code 1133 DistTELECON 8/28/90 VG



a set of high level extensions to all algebraic programi- from the available resources. This in..,ulates the pro-
uing language in which all the DSA operations can grammer from tie complications of emulating re,,urce,
he used effectively. This approach allows us to in- with what is actually available.
tertwine DSA operations with more conventional pro- ('ollections of DSA lines are called D.S'A airay.,. Iln-
grainming mechanisms including multiprocessing ex- dividual DSA arrays are allocated as if they were ar-
tensions. This section does not give a complete descrip- rays. but whose elements are declared using DSAstruct.
tion of the language. which is still evolving, but rather which indicates to the compiler the RAM and ('AM re-
describes tile major features and provides enough in- quirements of each line. For instance.
formation to make the examples in the later section
clear. DSAstruct interval

The components of the DSA description language CAM color[51;
RAM selected, tint16]. uaxZ16];

have five basic components. States S E Iinside. outside. unknown};

" Declarations that describe the allocation of DSA
lines to different DSA arrays, and the allocation defines the structure of a line of a DSA array. Only
of CAM and RAM of the lines of a DSA array to one CAM variable is allocated, color, which is .5 bits
various tasks. long. Three RAM variables are allocated. two of 16

" Basic operations for comparing the CAM contents bits and one of 1 bit. The States declaration indicates
with fixed data and performing boolean and arith- the allowable states of each line when programming
taetic operations with the contents of the RAM. the DSA using state transition techniques. The state

transition techniques and the States declaration are
* Loop abstractions that cause operations to be per- described fully in Section 3.4. A DSA line with this

formed on blocks of DSA lines, structure will have at least 5 bits of CAM and 35 bits
of RAM.

A mechanism for describing algorithms best ex- DSA arrays are collections of one or more primitire
pressed as state transition tables, blocks, where each primitive block is a set of 2k DSA

" A library of higher level functions. lines on a 21 boundary. Blocks of DSA lines are only
allocated in sizes that are a power of 2 because ofthe or-

Each of these components is described in one of the ganization of the decoders. Odd sized DSA array's are
following subsections. It is important to notice that allocated as sets of primitive blocks. Primitive blocks
our language intersperses DSA operations and conven- are identified by the selector word that spans their el-
tional SISD operations. We believe this allows our de- ements. Thus 100XXX2 represents the primitive block
scription language to be more expressive, and properly that extends from lines 32 through 39, inclusive. To in-
leaves to the compiler the problems of the separating dicate that the index i lies within this primitive block,
the operations that are performed on the DSA form we write i E 100XXX2.
those performed on the host processor. A DSA array with 10010 elements would consist of
3.1 Declarations primitive blocks of size 64, 32 and 4. It would be repre-

sented by the union of the identifiers for its constituent
The N processing elements in a DSA are identified primitive blocks. For instance, for the DSA array de-
by their coordinates within their interconnection grid. fined by the statement:
These coordinates are used as a subscript. For one di-
mensional DSA's this is just an integer from 0 to N- 1. DSAstruct interval Table[100];
Higher dimensional arrays use vector subscripts. we would have

For instance, the RAM of the th line is written as
Ri. while the CAM of each line is written as K,-. In Table = 100XXXXXX 2 U 101OXXXXX 2 U 1110000XX 2

the case of a one dimensional DSA we will denote the
RAM by Ri and the CAM by Ki. In the two dimen- The lines of Table each contain at least 5 bits of
sional case we use Rij and Kj,. The individual bits CAM and 35 bits of RAM. Subscripts are used to iden-
of the RAM can be referenced by Rjo],..., R,{n]. The tify lines, so the fifth line of Table, all 40 bits of it
Ri. Ki and A1L registers are not normally available to are referred to as Tables. Particular variables are re-
the programmer. Instead, the programmer uses vari- ferred to concatenating the DSA array name with ihe
able delarations to indicate the resource requirements variable name, separated by a slot. e.g. Table. min or
of his or her algorthm. and the compiler allocates them Table.mini.
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Set intersection and complement can also be used to 3.2 Basic Operations
describe DSA arrays. For instance, the even lines of Boolean and arithmetic operations wit i arbitrary size(I
Table might be denoted by RAM variables can be implemented in a bit serial fash-

Tablen XXXXXXXX0- ion using the function generator. Thus we permit
RAM variables to be combined using any of the stan-

= (I0OXXXXXX2 U 1010XXXXX 2 U 1110000XX42 ) dard boolean an(l arithmetic operations. provided their

n xXxXXXX .2 lengths are compatible.
Consider the following code sequence:

= 100XXXXX0.2 U 1010XXXX02 U 1110000X0.2 DSAstruct Sample{

and the lines whose indices are not multiples of A by RAM .4[3), B[2]. ('[2];
) S;

Table n XXXXXXX00 2  S..4, - S.B 1 + S.C';

= (100XXXXX 2 U 1010XXXXX 2 U 1110000XX2 ) The compiler might allocate the variables .4. B and C
in RAM asn (XXXXXXX1X 2 U XXXXXXX012) I A1  I B, I (' I

= 10oXXXXoX 2 U IOOXXXX01 2 U 1o10XXXX 2  I RJO] I R[] I R[2] I Ri[3] I Ri[4] 1 R R, [6]

U 11OXXX01 2 U 11100001X2 U 1110000012 Then the statement Ai - Bi + Ci would be expanded
into code equivalent to

Each of these three operations can be performed for-

mally on the selector bit strings as follows. We consider R4[0] - Ri[3] + R4[5];
the union of two selector bit strings R = r ... rk and Ri[ca.ry - Ri[3] A Ri[5];
S = s ... sk.. Assume R and S differ in just one bit Ri] - R[4] + Ri[61;

position, so ri = si for i 0 t. There are then three Ri[car.y] - (R,[4] A Ri[6]) V (Ri[4] A Ri[carry])
v(R,[6] A Rfcarry]);possibilities: R[2] - Ri[caxry];

R if rt = X 3.3 Selection and Querying
Ru 5 = S ifse =X... " -r otherwise Groups of instructions are encapsulated in a loop-like

block structure to indicate that they should be per-
The intersection of R and S can be performed on bit formed by a number of processing elements in parallel,

by bit basis. Assume ri and si differ. If neither is an An example of this form is:
X then the intersection of R and S is the empty set.( ForEach i. (boolean expression in i){
Otherwise, the intersection uses the bit which is not (forms involving i)
equal to X.
The complement of R is a union of e bit strings,

where f is the number of 0's and l's in R. To see this The body forms are performed for each i that satis-
examine the simple case R = X0-O' 2. We can trivially fies the boolean predicate. The simplest boolean pred-
write R as a union of 7 bit strings, where each has one icate just indicates that i is an element of a particular
X in the same position. These strings are listed in on set,. For instance, the following code segment performs
the left, hand side of the double bars in the table below, a calculation on the registers of the 32 even lines in the
On the right hand side, are given the three simplified range 0 to 3.
bit strings whose union is R. ForEach i, i E 0XXXX02

X1002 X1012 X1102 X1112 I1xx2 Ri[O]- (Ri[O]A Ri1])vRi[2]
X0102 X0112 X0112  This particular code segment will be expanded into a
X0012 1X0012 select instruction to set the Select Word to 0XXXXX02

These rules allow us to reduce all combinations of and a few operate instructions for the body of the loop.

unions, intersections and complements of selector bit select 0XXXXX0
strings to unions of bit strings, i.e., conjunctive normal Ri~t.p] - Ri[0] A Ri1]
form. Ri[0] - Ri[t..p] V Ri[2]



Odd sized DSA arrays. like tie 100 entry Table given each of the designated lines, followed by the c,,le for
in Section 3.1. are dealt with by generating a DSA de- the printf statement which uses tie value ret ured by
scriptor that is a union of selector bit strings. Then the successful readout instructions.
the body of the loop is repeated for each bit string. The set predicates available for use in a ForEach
For instance, the sequence statement include multibit tests, multiple matches and

arithmetic comparisons, which are discussed in Sec-
ForEach i, tion 3.5.

i E 10OXXXXXX2 U 1010XXXXX2 U 1110000XX2 {
(forms involving i) 3.4 State Transitions
I A common use of the processing elements of the DSA

would be treated as: is as a state machine. To make this a bit easier for tie
programmer and to make the resulting programs a bit

ForEach i, i E 10oXXXXXX 2  more intelligible, we have decided to have the compiler
(forms involving i) allocate the binary patterns for states and work out the

state transition equations. This is accomiplishwd with
ForEach i. i E 101OXXXXX2 { two new types of statements.

(forms involving i) A new set of states is introduced by the States form.

ForEach i, i E 1110000XX 2 { States S E (up. down, sideways);
(forms involving i)

This statement declares S to be a state identifier for
each PE. The state of any particular PE is indicated by

Notice that even though a ForEach loop evaluates its adding a subscript. Thus the state of the 5
t
h processor

body at each line of the DSA array, the time required is S5. If we wanted to find all the processing elements
for the loop is typically 0(1), where the constant of pro- which are in the up state, we would use the following
portionality is the time required to perform the body code segment:
once. In the worst case. where the size of the DSA ar-
ray is close to a power of 2. the loop will be performed ForEach i, Si = up
O(log N) times for a DSA array with N lines. pri3ntf ("Line %d is up, i);

Consider the following chunk of code. Occasionally, computations may involve more than

ForEach i, (i E 0XXXX02) A (Ki =- Test) one set of orthogonal states. In this case, several state
Ri[l] = R[1] A Rj[2]; variables are declared, as in the following example.
prinxtf ("Line %d matched", ±);S ( % tStates S E { up, down, sideways);

States T E { reek yellow, blue};
The predicate for this loop is a bit more complex. With these declarations, each PE could be in one of

The body is performed for each of the even lines in the nine de aates eah PE that e in oe of
range 0 to 63 whose CANM's contents match Test. This nine different states. We also say that the S-state of a
predicate is expanded into three instructions: a select processing element is S and that its T-st ate is Tf.
instruction that sets the Select Word and a match in- States can be changed by using the ewState form.struct ion for Ki Test. In addition the result of this The IluSwtate form identifies which state variable is

strutio fo Ki=_ est Inaddtio th reultof his to be changed and has body consisting of a set clauses
match is stored in a register (Ri~loop]) for later use. t h change nd sitin of astaclause

The first statement in the body is a simple operate indicating how to change the state. For instance, we
cycle, except that it is only supposed to take effect on might have
those lines that Ri[loop] = 1. This is accomplished States S E (up, down, sideways);
by conditionalizing writes in the loop on the value of ForEach i, i E "X...XX" {
Ri[loop]. Thus the first line of the body expands into: NewState S I

up: Si - down;
Ri[1] = (Ri[loop] A Ri[l] A R[2])V (Riloop]A R[1); down: if K=,_ "...11l"

then Si - up;
The final statement in the body actually expands else si - sideways;

into a loop. First an operate instruction is issued to otherwise: Si - sideways;
store the contents of the Ri[loop] in the priority en- }
coder register. Then a readout instruction occurs for
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If the compiler chose to use registers Ri[O] and R,[i] The following function identifies each line whose' key
to hold the state of each processing element, as follows: is greater than LoverBound. This is done by examining

each of the bits of tile key in sequence. Each DSA line
State Ri0] R,0J can be one of three states: greater. less( r and unknown.

upI 0 0 In state lesser the entry is known to be less than the
down 0 1 key: in the great ,r state it is known to be greater than

sidf way. 1 X t lie key, and in state unknown we still don'lt know. If an

There are three different binary inputs to the trrulthI entry is in state unknown then its leading bits match

table for this state transition, the two state variables the leading bits of the key that have been presented ,o

R[O] and R,[0] and tlie result of the match K, far. w
"X .. MX".whih w deoteby li.Thi gies ile All words are initially placed in th-. un~knownt state."X. .. X11X". which we denote by .A!1. This gives the Wecmaeteonntofhe(A wihL erud

following Karnough map: We compare the contents of tile CANM withLoverBound
one bit at a time, changing the state of the line as

00 01 11 10 necessary. The state transition diagram is shown in
M 0 00 Itx i Figure 2. At the end of m cycles, any word still in
71, 01 lx Ix state unknown is equal to the key.The following program uses two special arrays.

To minimize the the number of produce terms we use Bitcfask[n] contains a 1 in the n" bit position, from
the following assignment of the X's. highest to lowest. Thus LowerBound A BitMask[n] se-

lects the n th bit from LoverBound. FieldMask is simi-Ai 00 01 10 t lar. but has the n highest bits set.

3T i 0J 10 1 o 1 11  Compare(Array. LowerBound) I

Thus the original, state transition code is equivalent States Array. S E (greater, lesser. unknown);

to ForEach i, i E Arroay Ito kArray. Si - unknow~n;

ForEach i, i E "..XX" {or 0 < n < MatchWidth 4
•r40 - ( E "X.. XX A NewState S {Ri[o] - ((1%7i,$ "X ... X ) A R,[0]) v R,[0]; unknown:

R,1] - Ry; it Ara. Ki=

(LowerBound A PieldMask[]I
then Array.Si - unknown;

which, though somewhat shorter textually, is signifi- else it 0 = LowerBound A Bit~ask[n]
cantly less clear than the state transition code given then Anray.Si - greater;
earlier, else Array.Si - lesser;

3.5 Arithmetic Comparisons otherwise: Array.S} -Array.Si;

One of the fundamental applications of the data struc-
ture accelerator is searching tables quickly. The con-
tent addressable memory accelerates searches involving
boolean patterns, while the function generator acceler-
ates searches involving arithmetic patterns. For exam-
ple. we can determine those lines of a DSA that con- piler to implement arithmetic predicates in ForEach

tain a number lying between given bounds, or the line statements. For instance, one might want to use the

of the DSA that contains the largest quantity in time DSA to represent a large set of one dimension inter-

independent of the number of lines being searched. vals. The following code segment would then be used

For simplicity we assume that each line of the DSA to find those intervals that contain the origin.

contains precisely one rn-bit key. This key can lie either
in the CAM portion of the DSA or in the RAM portion. CAt L[16], R[16];
In this section we assume the key lies in the CAM, but } L;
trivial modifications of the algorithms enable it work
with the key in the RAM. We consider two fundamen- ForEach i, (S.Li < 0) A (S.Ri > 0)
tal operations, comparison with a given quantity and prlntf ("Interval %d -ontaitns the origin.".
finding the largest element of a set of keys.
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Figure 2: State Diagram for Comparison

For example. we might want to use the DSA to rep- However, this can be reduced to 0(n log n) operations
resent a set of intervals from 0 to 216- 1. Each interval by first sorting the integers an then comparing their
would be represented as one line of a (32. n) DSA. with neighbors. Using a DSA we can solve this problem us-
half of Ki used to hold the lower ii .it of the interval ing 0(n) space and 0(n) time in the following fashion.
and half for the upper limit. A modest sized data struc- First, store each aj in a line of the DSA. Then, in par-
ture accelerator could then contain a rather large set of allel, compute the difference between the contents of
these intervals. Using this algorithm, we can determine each line and a0 . Repeat this for each aj retaining the
the intervals in this set that intersect a given interval smallest difference. This will take 0(n) operations. Fi-
in time linear in the size of the intersection. This tech- nally, the smallest difference is determined using the
nique trivially extends to two or more dimensions. techniques of Section 3.5. This requires 0(1) opera-

tions. Thus this problem can be solved in 0(n) time
3.6 A Space/Time Trade-ff by using 0(n) lines of a DSA. The computational com-
One unfortunate effect of the linear nearest neighbor plexity of this solution is still 0(n 2 ) (O(n) processors
interconnection network of the data structure acceler- and 0(n) time), the same as the simple algorithm, but

intwrconnectionenetworkoofsthepdataustructure acceler-
ator is that the (graph theoretic) diameter of a data we have achieved a modest speed up (0(log n)) while

structure accelerator of n lines is n. Thus computa- continuing to use a straightforward algorithm.
tions that require data in distant lines be combined An alternative approach is to store in each of n2 lines

can be quite slow. The boolean n-cube type networks of the DSA the pairs (ai,aj). Then the n 2 differences

used by the Connection Machine [3] have diameter log n can be computed in parallel using 0(1) operations.

and thus can perform somewhat better with these al- This may be useful approach if many such calculations

goritlhms. Unfortunately, boolean n-cube networks do with the same set of ai are to be performed. The only

not scale to large numbers of processing elements. In problem is to get the data into the DSA efficiently.

fact. networks with diameter less than nI/3 cannot be Observe that the n2 entries in the DSA can be writ-

embedded in 3-space in a uniformly scalable fashion. ten using only 0(n) operations by using the selector

Power distribution and heat dissipation considerations carefully. Assume that n = 2 k, We begin by writting
raise this bound to n1/2 and packaging considerations ai in the n lines beginning with line in. Then write a,

to n. Thus algorithms that require a high degree of in lines i. n + i, 2n + i and so on. Each of these two

communication among 0(n) processing elements will passes requires 0(n) write operations so the entire n2

require more than 0(n) "real estate" in realizable sys- array can be set up in 0(n) time.

tems. The following code fragment implements this proce-
dure for a 4 x 4 array. For simplicity, we have (unre-This section shows how to solve such a problem using alistically) assumed that each of the a, is a single bit.

0(n 2 ) lines of a DSA. Notice that while fewer proces- Notice that each line is a single DSA instruction. Fig-

sors could be used if a smaller diameter network were
ure 3 illustrates the operation of this technique when

used, it is not clear that less total hardware would be aped t o 2 case.

required. applied to 2 x 2 case.

Consider the following problem: Given a set of n ForEach i, i E "00XI"
integers {ao, ... ,a,,-.}, find those pairs that have the Ri[le.t] - a0;
minimum difference. The brute force approach of com- ForEach i, i E "01X1"
paring all pairs of integers requires 0(n 2 ) operations. Ri[left] - at;



triangle PIP-2 P3 is

(o o (10 11 ,1'2 U12 1 = Xy 2 +X'23+, 3 Y i-J'03- 2 / --.F " /I .

I t lCl o I'3 qX 3  l

'The sign of the area is positive if the p~oinit, P,. P,
and P.3 are arranged counterclockwise in the plane [5].

Figure 3: Intermediate states while creating a cross Thus in Figure 4(b).the triangle P P2 P. has positive
product area. while the triangle P, P2 P4 has negative area.

To determine if a trial point P is contained wit hil a
polygon we check that. the triangles formed by P and

ForEach i i E "lOX" each edge of the polygon have positive area. This is
raet i, i E" "easily done by assigning each edge of the polygon to a

ForEach i, i E "IM" line of the DSA:
Ri4ioftI - a3;

ForEach i, i E "XXOO"
Ri[right] - ao; DSAarray LineSeguent 4

ForEach i, i E "XXo" RAM LzI. Ly[1. RWU1t, Ry EJ,

Ri[right] - at ; Area[2e);
ForEach i, i E "XX1O" 1;

Riarihti - 2; We have allocated four e-bit quantities to hold the
Rdaright] - a ; coordinates of the endpoints, and one 2e-bit quantityfor the area of the triangle in the computation.

4 Problems in Computational Geometry Polygonncluion(Edge, P, Py)

In this section we demonstrate how the data structure DSAarray LineSegueat Edges[]; 
accelerator can be used to solve several problems in ForEach i, i E Edges {
computational geometry. Since problems in computa- Edges.Area,
tional geometry typically arise as a component of other - Edges. Lz i x Edges.Ry i + Edges. Rxi x Py
applications (such as VLSI or mechanical CAD), we + Px x Edges.Lyi -Edges.Lxi x Py,
think the use of the data structure accelerator is par- -Edges.JRxi x Edges.Lyi- Pxi x Edges.Ryi;

ticular appropriate. It is relatively inefficient to de- i 3 ( <0)
then returnC("Outside") ;

sign specialized hardware to solve the computational else return( "Inside");

geometry problems that arise in CAD, because they }

are just one component of a larger computational prob-
lem. And yet there is a huge amount of potential paral-
lelism to be exploited. The data structure accelerator The time required by this algorithm is independent
provides that parallelism in a fashion that is not spe- of the number of edges of the polygon(s), but due to
cialized to the problems of computational geometry. At the multiplications in the area computation, quadratic
the same time, these techniques require using the data in the number of bits required to represent the coordi-
structure accelerator in tandem with regular process- nates of the vertices 0(f2). We could say that the time
ing elements. This is precisely the type of cooperative is O(( logeC) by using an FFT algorithm, but this would
heterogeneous computation discussed in the introduc- only be of theoretical interest and ignores the perfor-
tion. mance cost of getting a larger algorithm to the DSA.

In addition, we must count the preprocessing time re-
quired to load the n vertices into the DSA, which is

The convex polygon inclusion problem is relatively 0(tn), since each point has size O(e). The time to
straightforward. A convex polygon is described by the check m trial points grows to 0(n 2 )), while the pre-
sequence of its vertices, as shown in Figure 4(a). We are processing time remains fixed (using classical multipli-
to determine if a given trial point is contained within cation).
the polygon. The basic relationship we use is illustrated If the number of trial points is large, or the same trial
in Figure 4(b). If we denote the x and y coordinates points are to be used repeatedly with different sets of
of the point Pi by xi and yi, the signed area of the polygons, we can store the trial points in the DSA and

9



P1

P3

P4 P2

(a) (b)

Figure 4: Polygon Inclusion

perform tie computation for different polygons. In this each black dot lies on or within the boundary of the
case the preprocessing time becomes O(n) while the region. Given such a boundary we can propagate a
computing time becomes O(11r2)). seed node outward until it reaches a boundary. This is

Classical algorithms [5] require O(Cn) time for pre- illustrated in Figure 5 where the seed node is at (6.5).
processing and answer the inclusion question for in trial At to it is the only node marked. Between ti and ti+1
points in time O(2 In log n). For comparison, these re- each marked node propagates a mark to each of its four
stilts are summarized below, neighbors if they are (1) not already marked and (2)

not a element of the boundary. The time at which each
Preprocessing Query node is marked is given in the figure. In this case every

vertices in DSA 'n -_ node in the region that is orthogonally connected to
trial points in DSA fm n7 I (6, 5) is marked in 7 units of time.

classical n -m log n The data structure used to model the grid is defined

The DSA approach uses a straightforward algorithm as follows.

and achieves somewhat better performance than the DSAstruct FillGrid {
classical techniques. The following section discusses a States S E {interior, erterior, boundar!A unknown);
variant of this problem where the test points lie in a } Gridln, n;
regular grid.

4.2 Polygon Filling Each node in the grid can be in one of four states:

A common primitive for a number of geometric algo- interior, ezterior, boundary and unknown. Initially
rithms is polygon filling. In the two dimensional case, each node is placed in the unknown state. The bound-
we are given a rectangular section of the plane dis- ary is then defined by place each node on or just inside
cretized into an in x n grid. Within this grid are the boundary to the boundary state. The orientation
marked the boundaries of a number. of connected re- of the boundary is defined by setting one node inside
gions. The polygon filling problem is to identify the the region to the interior state. This node serves as a
regions in which each point of the grid is contained, seed that spreads throughout the region.

A simple example of this problem arises in computer The following block of code then propagates the seed
graphics where the regions might represent homoge- throughout the interior.
neous regions of an image, e.g. surfaces of objects.
When the image is presented on the screen, each pixel Propogat< (Grid) {
within each region needs to be painted with the same ForEach (,j), (0) E Grid
color. NewStat. Grid.S {

Figure 5 shows a two dimensional region embedded unknown:
in a grid. Each dot represents a single processing el- it (Grid.S+ij = interior)
ement of a two dimensional DSA. The diagonal lines v(Grid.Si,j +l = interior)
form the true boundary of the region, while the black v(Grid.Si,-t = interior)
dots indicate the boundary on the grid. Notice that V(Grid.Sj_i = interior)

to
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Figure 5: Sample Image
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